小功率整流滤波电路

星空全站小功率整流滤波电路

产品型号:案例中心
时间:2024-07-29 10:37:26| 来源:星空全站APP 作者:星空体育全站app在线平台

产品详情

  整流电路的任务是将交流电变换成直流电。完成这一任务主要是靠二极管的单向导电作用,因此二极管是构成整流电路的关键元件(常称之为整流管)。

  图1表示一个最简单的单相半波整流电路。图中T为电源变压器,将220V的电网电压变换为合适的交流电压,D为整流二极管,电阻RL代表需要用直流电源的负载。其工作原理为:在变压器副边电压v2为正的半个周期内,二极管正向导通,电流经二极管流向负载,在RL上得到一个极性为上正下负的电压;而在v2为负半周时,二极管反向截止,电流等于零。所以,在负载电阻RL两端得到的电压vL的极性是单方向的,达到了整流的目的。

  衡量整流电路性能的常用技术指标有两个:一个是反映转换关系的,用整流输出电压的平均值来表示;另一个是反映输出直流电压平滑程度的,称为纹波系数。此外,还有与选择整流管有关的参数:流过整流管的平均电流和整流管的反向峰值电压。

  单相桥式整流电路如图1(a)所示,图中Tr为电源变压器,它的作用是将交流电网电压vI变成整流电路要求的交流电压 ,RL是要求直流供电的负载电阻,四只整流二极管D1~D4接成电桥的形式,故有桥式整流电路之称。

  单相桥式整流电路的工作原理可分析如下。为简单起见,二极管用理想模型来处理,即正向导通电阻为零,反向电阻为无穷大。

  在v2的正半周,电流从变压器副边线圈的上端流出,只能经过二极管D1流向RL,再由二极管D3流回变压器,所以D1、D3正向导通,D2、D4反偏截止。在负载上产生一个极性为上正下负的输出电压。其电流通路可用图1(a)中实线的负半周,其极性与图示相反,电流从变压器副边线圈的下端流出,只能经过二极管D2流向RL,再由二极管D4流回变压器,所以D1、D3反偏截止,D2、D4正向导通。电流流过RL时产生的电压极性仍是上正下负,与正半周时相同。其电流通路如图1(a)中虚线箭头所示。

  综上所述,桥式整流电路巧妙地利用了二极管的单向导电性,将四个二极管分为两组,根据变压器副边电压的极性分别导通,将变压器副边电压的正极性端与负载电阻的上端相连,负极性端与负载电阻的下端相连,使负载上始终可以得到一个单方向的脉动电压。

  根据上述分析,可得桥式整流电路的工作波形如图2。由图可见,通过负载RL的电流iL以及电压vL的波形都是单方向的全波脉动波形。

  桥式整流电路的优点是输出电压高,纹波电压较小,管子所承受的最大反向电压较低,同时因电源变压器在正、负半周内都有电流供给负载,电源变压器得到了充分的利用,效率较高。因此,这种电路在半导体整流电路中得到了颇为广泛的应用。电路的缺点是二极管用得较多,但目前市场上已有整流桥堆出售,如QL51A~G、QL62A~L等,其中QL62A~L的额定电流为2A,最大反向电压为25V~1000V。故单相桥式整流电路常画成图1(b)所示的简化形式。

  整流电路的性能常用两个技术指标来衡量:一个是反映转换关系的,用整流输出电压的平均值来表示;另一个是反映输出直流电压平滑程度的,称为纹波系数。

  在桥式整流电路中,二极管D1、D3和D2、D4是两两轮流导通的,所以流经每个二极管的平均电流为

  二极管在截止时管子两端承受的最大反向电压可以从桥式整流电路的工作原理中得出。在v2正半周时,D1、D3导通,D2、D4截止。此时D2、D4所承受的最大反向电压均为v2的最大值,

  同理,在v2的负半周,D1、D3也承受到同样大小的反向电压。所以,在选择整流管时应取其反向击穿电压VBR VRM 。

  滤波电路用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容器C,或与负载串联电感器L,以及由电容、电感组合而成的各种复式滤波电路。常用的结构如图1所示。

  由于电抗元件在电路中有储能作用,并联的电容器C在电源供给的电压升高时,能把部分能量存储起来,而当电源电压降你时,就把能量释放出来,使负载电压比较平滑,电容C具有平波的作用;与负载串联的电感L,当电源供给的电流增加(由电源电压增加引起)时,它把能量存储起来,而当电流减小时,又把能量释放出来,使负载电流比较平滑,即电感L也有平波作用。

  滤波电路的形式很多,为了掌握它的分析规律,把它分为电容输入式(电容器C接在最前面,如图1中的(a)、(c))和电感输入式(电感器L接在最前面,如图1中的(b))。前一种滤波电路多用于小功率电源中,而后一种滤波电路多用于较大功率电源中(而且当电流很大时仅用一电感器与负载串联)。

  图1为单相桥式整流、电容滤波电路。在分析电容滤波电路时,要特别注意电容器两端电压vC对整流元件导电的影响,整流元件只有受正向电压作用时才导通,否则便截止。

  负载RL未接入(开关S断开)时的情况:设电容器两端初始电压为零,接入交流电源后,当v2为正半周时,v2通过D1、D3向电容器C充电;v2为负半周时,经D2、D4向电容器C充电,充电时间常数为

  其中Rint包括变压器副绕组的直流电阻和二极管D的正向电阻。由于Rint一般很小,电容器很快就充电到交流电压v2的最大值

  因td一般较大,故电容两端的电压vC按指数规律慢慢下降,其输出电压vL = vC,如图2的ab段所示。与此同时,交流电压v2按正弦规律上升。当v2vC时,二极管D1、D3受正向电压作用而导通,此时v2经二极管D1、D3一方面向负载RL提供电流,另一方面向电容器C充电(接入负载时的充电时间常数tc =( RLRint)C≈Rint C很小),vC将如图2中的bc段,图中bc段上的阴影部分为电路中的电流在整流电路内阻Rint上产生的压降。vC随着交流电压v2升高到接近最大值

  (1)二极管的导电角qp,流过二极管的瞬时电流很大。电流的有效值和平均值的关系与波形有关,在平均值相同的情况下,波形越尖,有效值越大。在纯电阻负载时,变压器副边电流的有效值I2 = 1.11IL,而有电容滤波时

  (2)负载平均电压VL升高,纹波(交流成分)减小,且RLC越大,电容放电速度越慢,则负载电压中的纹波成分越小,负载平均电压越高。

  3)负载直流电压随负载电流增加而减小。VL随IL的变化关系称为输出特性或外特性,如图1所示。

  总之,电容滤波电路简单,负载直流电压VL较高,纹波也较小,它的缺点是输出特性较差,故适用于负载电压较高,负载变动不大的场合。

  在桥式整流电路和负载电阻RL之间串入一个电感器L,如图1所示。利用电感的储能作用可以减小输出电压的纹波,从而得到比较平滑的直流。当忽略电感器L的电阻时,负载上输出的平均电压和纯电阻(不加电感)负载相同,即VL=0.9V2。

  电感滤波的特点是,整流管的导电角较大(电感L的反电势使整流管导电角增大),峰值电流很小,输出特性比较平坦。其缺点是由于铁心的存在,笨重、体积大,易引起电磁干扰。一般只适用于低电压、大电流场合。

  此外,为了进一步减小负载电压中的纹波,电感后面可再接一电容而构成倒L型滤波电路或RC-Ⅱ型滤波电路。其性能和应用场合分别与电感滤波(称电感输入式)电路及电容滤波(又称电容输入式)电路相似。

  当v2处于正半周(a端为正、b端为负)时,D1导通、D2截止,v2向电容器C1充电,电压极性为右正左负,峰值电压可达


星空全站 上一篇:派瑞股份2023年年度每10股派01203元 股权登记日为7月26日 下一篇:飞机也要进“4S店”?川航云南分公司举办“走进机务”活动
相关案例更多
分享到:
快捷导航: 星空全站 星空全站APP 新闻中心 产品中心 案例中心 星空体育全站app在线平台 网站地图

Copyright © 2016 星空全站APP在线平台(中国)注册登录下载 ALL RIGHTS RESERVED星空体育全站app在线平台
电话:0731-85133451/22201682地址:湖南长沙雨花区长沙国际研创中心A3栋